

UNIVERSITÄT DUISBURG ESSEN

Offen im Denken

Disentangling the Effects of Metering and Tariff Configurations on Household Flexibility in Energy Systems

Marco S. Breder Essen, 26.08.2025

Agenda

Storyline & Research	1
Method & Data	2
Preliminary Results	3
Discussion	4

Demand response by residential consumers is of pivotal relevance to meet transformation challenges

Storyline & Research

1.2

1.3

14.7

25.2-31.7

67.4

- Challenges from overall energy system perspective:
 - Decarbonization (cross-sectoral)
 - Grid / system resilience
 - Integration/Coupling of renewables
 - (price-driven) **Demand response**
 - As energy systems continue to transform, small-scale flexibility resources are becoming increasingly important

Market-oriented

Grid-oriented

Renewables integration Peak-demand reduction **Grid stability Avoidance of congestion**

..

Key lever for efficient implementation: Configuration of **meters** and **tariffs**

Heat Pumps (HPs) in million

Electric Vehicles (EVs) in million

Photovoltaic (PV) & Battery

Storage Systems (BSS) in GW

Residential consumer face several decision-making hurdles for an efficient (system-oriented) configuration of meters and tariffs

Storyline & Research

Offen im Denken

- Disentangling the influence of electricity meter and tariff configurations on the provision of flexibility to the overall energy system
- The focus is on three complexities:
 - Number of meters*
 (Simplified 1 meter = 1 tariff)
 - 2. Pricing module
 - 3. Grid charge module
 - 1: Taking into account household-specific characteristics, what is the optimal configuration?
 - 2: Taking into account household-specific tariff configurations, what interaction effects can be observed between the wholesale market and households?

•Module 3 time-variant fee [€,/kWh,]

^{*} Simplified assumption: one meter = one tariff

Literature review reveals a gap on wholesale market interaction, consideration of uncertainty and future technological options (meter)

Storyline & Research

	Objective	Scope
Stute & Klobasa (2024)	Interplay between dynamic tariffs and different grid charge designs	Households & Grid
Spiller et al. (2023)	Effect of tariffs on household adoption of small-scale flexibilities	Households
Vom Scheidt et al. (2019)	Potential individual economic consequences of tariff selection	Households
Andruszkiewi cz et al. (2021)	Effectiveness of ToU tariffs, used as price-based demand response programs	Households
Pallonetto et al. (2016)	Effectiveness of demand response (All-electric) strategies using ToU tariffs	Household & Utility perspective
Schreck et al. (2022)	Effect of grid tariff design on demand and feed-in peaks and the resulting financial effects	Households vs. Local Energy Markets
Pinel et al. (2019)	Relationship between grid tariffs and investment	Neighborho ods & Grids

- Relevant literature analyzes
 - Interplay of tariff components
 - Incentives for investments
 - Financial consequences
 - Interaction with distribution system operators

- Relevant literature <u>considers</u>
 - Various combinations of tariff components
 - Different levels of electrification of residential consumers

- Relevant literature does not consider
- differentiation of small-scale flexibilities in the tariff selection decision

- But lacks interactions with markets
- But predominantly relies on static data inputs
- Individual tariff heterogeneity

Iterative Optimization of Wholesale level and household level leads to equilibria

Method & Data

- Configuration Meter/Tariff (optimized)
 - ...
- (Smart) Charging (optimized)
 - ...
- Common restrictions at Wholesale and Residential Level
- Data
 - So far stylized Data
 - Next Steps incorporate granular residential characteristics
 - Eg. EFH-1P-....

Optimal Choice of Meter and Tariff Configuration

Method & Data

- Restrictions for Meter & Tariff Configuration
- 1. $griddemand^{base}(h,r,i,t) \leq bigM(h,r) * x(h,r,i)$
- 2. $griddemand^{EV}(h,r,i,t) \leq bigM(h,r) * y(h,r,i)$
- $3. \quad \sum_{i} x(h, r, i) = 1$
- $4. \quad \sum_{i} y(h, r, i) = 1$
- 5. $x1(h,r,i) y1(h,r,i) \le z_meter(h,r)$
- 6. $y1(h,r,i) x1(h,r,i) \le z_meter(h,r)$

For one meter, only one tariff can be chosen

In case of same tariff choice for Baseload and EV-load, only one meter is installed

Preliminary Results

	HH-mix	HH w PV-EV	HH w PV-BESS- EV
Meter	2	2	1
Tariff (Base / EV)	Static / dynamic	Static / dynamic	dynamic

26/08/25

Discussion

- Model extension:
 - Detailed representation of agents
 - Using Long-term Modelling
 - Bidirectional charging
 - V2H, V2G
 - Scenario setting and data
 - E.g. Load profiles

- Optimized vs exogenous Configuration
- Taking into account household-specific characteristics, what is the optimal configuration?
- 2. Taking into account household-specific tariff configurations, what interaction effects can be observed between the wholesale market and households?

Thank you for your attention!

Marco Sebastian Breder, M.Sc.

Teamlead Energy Markets and Energy Policy House of Energy, Climate & Finance University of Duisburg-Essen R11 T07 C02 | Universitätsstraße 12 | 45141 Essen | Germany Phone +49 201/18-36459

Email: Marco.Breder@uni-due.de Web: www.ewl.wiwi.uni-due.de

LinkedIn

